Contenus
[Toute propriété] contient
Simple Forms
-
Vc-Wei-007
Modèle sur la théorie des fonctions. Le modèle illustre l'évolution de la fonction elliptique \( w=p(u) \) (dans la forme normale de Weierstrass) pour les invariants \( g_2=0 \), \( g_3=4 \). -
Ct-Neg-011
Cette pseudo-sphère a été découverte par Beltrami en 1868. C'est une surface de révolution dont la paramétrisation en coordonnées cylindriques (\(r\), \(\vartheta \), \( z \)) s'écrit : $$z = cos\,t + ln\,tan\dfrac{t}{2},\,\,\,\, r = sin\,t$$ Sa méridienne, c'est-à-dire la courbe plane qui l'engendre par révolution autour de l'axe vertical, est une tractrice, dite aussi courbe aux tangentes égales, car telle que la longueur de la tangente entre le point de contact et une droite (l'asymptote) soit constante. Cette courbe n'est autre que celle qui a servi de profil à Gustave Eiffel pour dessiner sa tour. La courbure de cette surface de révolution est constante et égale à \( –1 \), ce qui lui vaut son appellation de pseudo-sphère, par analogie avec la sphère également de révolution mais de courbure constante égale à \( 1 \). Elle est localement isométrique au demi-plan de Poincaré qui est le modèle des surfaces à courbure \( –1 \). Les géodésiques, dont quelques-unes sont tracées, satisfont les axiomes de la géométrie hyperbolique. C'est le théorème de Beltrami. Figure également une courbe asymptotique, c'est-à-dire une courbe en chaque point de laquelle le plan osculateur reste tangent à la surface. Il y a plusieurs surfaces pseudo-sphériques de révolution. On les classe en trois types selon que la méridienne coupe l'axe (type elliptique), admet l'axe pour asymptote (type parabolique), ou reste à une distance minimum strictement positive (type hyperbolique). Il s'agit donc ici d'une surface pseudo-sphérique de type parabolique. Ce modèle appartient à la collection Brill et fut réalisé par Bacharach à Münich en 1877. L'allure de trompette bouchée est trompeuse. La surface s'étend à l'infini symétriquement vers le haut et le bas, et a été tronquée par commodité. (François Apéry : Collection de cartes postales IHP - 2016) -
Gd-004
Surface algébrique rationnelle du 8ème degré. -
Gd-009
Surface définie paramétriquement. -
Gd-006
Surface engendrée par une courbe d'un cylindre qui roule sur un plan. -
Gd-002
Surface engendrée par une section plane d'un cylindre qui roule sur un cylindre. -
Ct-Neg-009
Surface de Kuen. Surface de courbure constante négative avec des lignes de courbure planes, version en bois.