Gravures Patrice Jeener
Collection
Contenus
-
PJ-S-021
\(w=e^u \cos v\) \(x=e^u \sin v\) \(y=u\) \(z=v\) -
PJ-S-020
\(x=3uv^2-u^3+3u\) \(y=3u^2-v^3+3v\) \(z=3u^2-3v^2\) -
PJ-S-019
-
PJ-S-018
\(x=2t- \sin 2tch2u\) \(y=6u+ \cos 2tsh2u\) \(z=8 \sin tchu\) -
PJ-S-017
\(x=2u-e^{2u} \cos 2v\) \(y=2v-e^{2u} \sin 2v\) \(z=4e^u \cos v\) -
PJ-S-016
\(x=\frac{4e^t\cos u (2^{2t}-1)}{e^{4t}-2e^{2t}\cos 2u+1}\) \(y=\frac{4e^t \sin u (e^{2t}+1)}{e^{4t}-2e^{2t}\cos 2u+1}+e^t\sin u\) \(z=\log \frac{e^{2t}-2e^t \cos u+1}{e^{2t}+2e^t \cos u+1}+e^t \cos u\) -
PJ-S-015
-
PJ-S-014
-
PJ-S-013
\(x=2e^{2u}\cos 2v-e^{4u}\cos 4v\) \(y=2e^{2u}\sin 2v+e^{4u}\sin 4v\) \(z=\frac{8}{3}e^{3u}\cos 3v\) -
PJ-S-012
-
PJ-S-011
\(x=\int(1-w^{2n})dw\) \(y=i\int(1+w^{2n})dw\) \(z=\int2w^n dw\) \(w=t-iu\) \(n=3\) -
PJ-S-010
\(x=u+\sqrt{2} shu\cos v\) \(y=\sqrt{2} v+chu \sin v\) \(z=shu\sin v\) -
PJ-S-009
-
PJ-S-008
-
PJ-S-007
-
PJ-S-006
\(x=3\cos u\ shv-\cos 3u\ sh3v\) \(y=3\sin u\ shv+\sin 3u\ shv\) \(z=3\cos 2u\ ch2v\) -
PJ-S-005
-
PJ-S-004
\(x=15w-10w^3+3w^5\) \(y=i(15w-3w^5)\) \(z=15w^3-7,5w^4\) \(w=t+iu\) -
PJ-S-003
-
PJ-S-002
\(x=\int(1-w^{2n})dw\) \(y=i\int(1+w^{2n})dw\) \(z=\int2w^ndw\) \(n=5\) \(w=t-iu\) -
PJ-S-001
Surface de Catalan. -
PJ-L-064
-
PJ-L-066
-
PJ-L-065
-
PJ-L-063
-
PJ-L-062
-
PJ-L-061
-
PJ-L-060
Hommage à la géométrie. Polytopes réguliers. -
PJ-L-059
Faune. -
PJ-L-057
-
PJ-L-056
-
PJ-L-055
-
PJ-L-054
Surfaces minimales à 2 périodes. -
PJ-L-053
4/60 -
PJ-L-052
Surfaces minimales. -
PJ-L-051
Surface spirale minimale. -
PJ-L-050
Formules de Weierstrass. -
PJ-L-049
Le fou du roi. -
PJ-L-048
Le magicien. -
PJ-L-047
Gubbio. -
PJ-L-046
Le Poët Sigillat. -
PJ-L-045
-
PJ-L-044
-
PJ-L-043
-
PJ-L-042
Surface de Boy. -
PJ-L-041
C120 aux fleurs. -
PJ-L-040
La naissance des mathématiques. -
PJ-L-039
-
PJ-L-038
Corolle. -
PJ-L-037
Triple bouteille unilatère. -
PJ-L-036
C24 -
PJ-L-035