Ct-Neg-007

Contenu

Cote

Ct-Neg-007

Description

Cette pseudo-sphère a été découverte par Beltrami en 1868. C'est une surface de révolution dont la paramétrisation en coordonnées cylindriques (\(r\), \(\vartheta \), \( z \)) s'écrit :
$$z = cos\,t + ln\,tan\dfrac{t}{2},\,\,\,\, r = sin\,t$$
Sa méridienne, c'est-à-dire la courbe plane qui l'engendre par révolution autour de l'axe vertical, est une tractrice, dite aussi courbe aux tangentes égales, car telle que la longueur de la tangente entre le point de contact et une droite (l'asymptote) soit constante. Cette courbe n'est autre que celle qui a servi de profil à Gustave Eiffel pour dessiner sa tour. La courbure de cette surface de révolution est constante et égale à \( –1 \), ce qui lui vaut son appellation de pseudo-sphère, par analogie avec la sphère également de révolution mais de courbure constante égale à \( 1 \). Elle est localement isométrique au demi-plan de Poincaré qui est le modèle des surfaces à courbure \( –1 \). Les géodésiques, dont quelques-unes sont tracées, satisfont les axiomes de la géométrie hyperbolique. C'est le théorème de Beltrami. Figure également une courbe asymptotique, c'est-à-dire une courbe en chaque point de laquelle le plan osculateur reste tangent à la surface.

Il y a plusieurs surfaces pseudo-sphériques de révolution. On les classe en trois types selon que la méridienne coupe l'axe (type elliptique), admet l'axe pour asymptote (type parabolique), ou reste à une distance minimum strictement positive (type hyperbolique). Il s'agit donc ici d'une surface pseudo-sphérique de type parabolique.

L'allure de trompette bouchée est trompeuse. La surface s'étend à l'infini symétriquement vers le haut et le bas, et a été tronquée par commodité.
(François Apéry : Collection de cartes postales IHP - 2016)

Concepteur

Réalisé sous la direction du professeur Dr. Brill. Modélisé par l'étudiant en mathématique J. Bacharach.

Date de conception

1877

Fabricant / Éditeur

Martin Schilling, Halle a.S.

Date de fabrication

ca. 1900-1910

Lieu de fabrication

Halle-sur-Saale, Allemagne

Dimensions & matériaux

Hauteur : 24,5 cm ; Largeur : 17,5 cm ; Profondeur : 17,5 cm
Plâtre

Identifiants & localisation

IHP : Ct-Neg-007
Belgodère : 328b
Brill-Schilling : I, 1
Salle de lecture
BV07

Expositions / Oeuvres

Exposé lors de : "Carte blanche à Toshimasa Kikuchi", Musée Guimet, Paris, 7 juillet – 4 octobre 2021
Article de Roger Mansuy : "Courbure constante", Objet Mathématique (2017)

Bibliographie

Schilling, Martin : Catalog mathematischer Modelle / Verlag von Martin Schilling, Leipzig (1911), 7. Auflage, no.230 (I, 1), p. 3, 144.
Kikuchi, Toshimasa : Objets mathématiques / Galerie Mingei (2021), p. 126.