Gravures Patrice Jeener
Collection
Contenus
-
PJ-S-019
-
PJ-S-018 \(x=2t- \sin 2tch2u\) \(y=6u+ \cos 2tsh2u\) \(z=8 \sin tchu\) -
PJ-S-017 \(x=2u-e^{2u} \cos 2v\) \(y=2v-e^{2u} \sin 2v\) \(z=4e^u \cos v\) -
PJ-S-016 \(x=\frac{4e^t\cos u (2^{2t}-1)}{e^{4t}-2e^{2t}\cos 2u+1}\) \(y=\frac{4e^t \sin u (e^{2t}+1)}{e^{4t}-2e^{2t}\cos 2u+1}+e^t\sin u\) \(z=\log \frac{e^{2t}-2e^t \cos u+1}{e^{2t}+2e^t \cos u+1}+e^t \cos u\) -
PJ-S-015
-
PJ-S-014
-
PJ-S-013 \(x=2e^{2u}\cos 2v-e^{4u}\cos 4v\) \(y=2e^{2u}\sin 2v+e^{4u}\sin 4v\) \(z=\frac{8}{3}e^{3u}\cos 3v\) -
PJ-S-012
-
PJ-S-011 \(x=\int(1-w^{2n})dw\) \(y=i\int(1+w^{2n})dw\) \(z=\int2w^n dw\) \(w=t-iu\) \(n=3\) -
PJ-S-010 \(x=u+\sqrt{2} shu\cos v\) \(y=\sqrt{2} v+chu \sin v\) \(z=shu\sin v\) -
PJ-S-009
-
PJ-S-008
-
PJ-S-007
-
PJ-S-006 \(x=3\cos u\ shv-\cos 3u\ sh3v\) \(y=3\sin u\ shv+\sin 3u\ shv\) \(z=3\cos 2u\ ch2v\) -
PJ-S-005
-
PJ-S-004 \(x=15w-10w^3+3w^5\) \(y=i(15w-3w^5)\) \(z=15w^3-7,5w^4\) \(w=t+iu\) -
PJ-S-003
-
PJ-S-002 \(x=\int(1-w^{2n})dw\) \(y=i\int(1+w^{2n})dw\) \(z=\int2w^ndw\) \(n=5\) \(w=t-iu\) -
PJ-S-001 Surface de Catalan. -
PJ-Plaque Plaque de cuivre gravée au recto et au verso. -
PJ-M-027
-
PJ-M-026 Surface minimale aux triangles. -
PJ-M-025 Surface minimale à la deltoïde. -
PJ-M-024 Notre-Dame de Paris. -
PJ-M-023 Mercure. -
PJ-M-022 Surface de Neovius. -
PJ-M-021 Surface minimale d'Henneberg. -
PJ-M-020
-
PJ-M-019
-
PJ-M-018
-
PJ-M-017
-
PJ-M-016
-
PJ-M-015
-
PJ-M-014 \(z=\log \cos x - \log \cos y\) -
PJ-M-013 Surface de Dini. -
PJ-M-012 Surface de Boy. -
PJ-M-011
-
PJ-M-010
-
PJ-M-009 \(x=e^{t/10} \cos u \cos 2t(\cos 5t+1)\) \(y=e^{t/10} \cos u \cos 2t(\cos 5t+1)\) \(z=e^{t/10} \cos^2 u \cos 2t(\cos 5t+1)+\frac{t}{2}\) -
PJ-M-008
-
PJ-M-007 Bouteille de Klein. -
PJ-M-006 Surface de Boy. -
PJ-M-005
-
PJ-M-004
-
PJ-M-003
-
PJ-M-002
-
PJ-M-001 Ruban de Möbius. -
PJ-L-066
-
PJ-L-065
-
PJ-L-064
-
PJ-L-063
-
PJ-L-062