-
Cy-Dup-020 L'inversion de centre \( 0 \) et de rapport \( 1 \) est une transformation de l'espace qui échange tout point distinct de \( 0 \) avec un point de la même demi-droite issue de \( 0 \) et dont la distance à l'origine est l'inverse de celle du point de départ. Cette transformation jouit de la propriété de transformer les cercles en cercles, à condition toutefois de considérer les droites comme des cercles de rayon infini. Il en résulte que l'inverse d'un tore contient, comme le tore, quatre familles de cercles. Une telle surface s'appelle cyclide de Dupin.
Elles ont été découvertes par Charles Dupin en 1822. Selon la position du centre d'inversion par rapport au tore, l'aspect de la cyclide varie. Pour ce modèle (cyclide parabolique), le centre d'inversion est sur le tore.
Les cyclides de Dupin, comme les tores, sont des surfaces du 4ème degré.
-
Cy-Dup-021 L'inversion de centre \( 0 \) et de rapport \( 1 \) est une transformation de l'espace qui échange tout point distinct de \( 0 \) avec un point de la même demi-droite issue de \( 0 \) et dont la distance à l'origine est l'inverse de celle du point de départ. Cette transformation jouit de la propriété de transformer les cercles en cercles, à condition toutefois de considérer les droites comme des cercles de rayon infini. Il en résulte que l'inverse d'un tore contient, comme le tore, quatre familles de cercles. Une telle surface s'appelle cyclide de Dupin.
Elles ont été découvertes par Charles Dupin en 1822. Selon la position du centre d'inversion par rapport au tore, l'aspect de la cyclide varie. Pour ce modèle (cyclide croisée interne), le tore est croisé, autrement dit, le cercle générateur coupe l'axe de révolution, et le centre d'inversion est à l'extérieur du tore.
Les cyclides de Dupin, comme les tores, sont des surfaces du 4ème degré.
-
Cy-Dup-025 Cyclide du 3ème degré : noyau.
\(z(x^2+y^2+z^2-5z+4)-x^2-4y^2=0\)
-
Cy-Dup-026 Cyclide du 3ème degré : collier ouvert.
\(z(x^2+y^2+z^2-10z+16)-8y^2=0\)
-
Cy-Dup-027 Cyclides du 3ème degré : collier nul.
\(z(x^2+y^2+z^2-2z+1)-x^2=0\)
-
Cy-Dup-028 Cyclide de 3ème degré.
\(z(x^2+y^2+z^2)+2(x^2-y^2)-16z=0\)
-
Cy-Dup-030 Reprenant la question des cyclides en 1864, Gaston Darboux introduit une classe remarquable de surfaces du quatrième degré, appelées depuis cyclides de Darboux, qui contient en particulier les cyclides de Dupin. Ces surfaces jouissent de la propriété de contenir six familles de cercles, et même dix si on compte les cercles imaginaires. Les cyclides de Dupin correspondent au cas où certaines familles coïncident pour n’en former plus que quatre.
Cette série de neuf modèles en bois dûs à Caron, représente différentes cyclides de Darboux. La partie en bois correspond au huitième de la surface située dans l’octant matérialisé par le trièdre sur lequel figure l’équation. On reconstitue l’ensemble de la surface au moyen des symétries par rapport aux plans du trièdre.
-
Cy-Dup-031 Reprenant la question des cyclides en 1864, Gaston Darboux introduit une classe remarquable de surfaces du quatrième degré, appelées depuis cyclides de Darboux, qui contient en particulier les cyclides de Dupin. Ces surfaces jouissent de la propriété de contenir six familles de cercles, et même dix si on compte les cercles imaginaires. Les cyclides de Dupin correspondent au cas où certaines familles coïncident pour n’en former plus que quatre.
Cette série de neuf modèles en bois dûs à Caron, représente différentes cyclides de Darboux. La partie en bois correspond au huitième de la surface située dans l’octant matérialisé par le trièdre sur lequel figure l’équation. On reconstitue l’ensemble de la surface au moyen des symétries par rapport aux plans du trièdre.
-
Cy-Dup-032 Reprenant la question des cyclides en 1864, Gaston Darboux introduit une classe remarquable de surfaces du quatrième degré, appelées depuis cyclides de Darboux, qui contient en particulier les cyclides de Dupin. Ces surfaces jouissent de la propriété de contenir six familles de cercles, et même dix si on compte les cercles imaginaires. Les cyclides de Dupin correspondent au cas où certaines familles coïncident pour n’en former plus que quatre.
Cette série de neuf modèles en bois dûs à Caron, représente différentes cyclides de Darboux. La partie en bois correspond au huitième de la surface située dans l’octant matérialisé par le trièdre sur lequel figure l’équation. On reconstitue l’ensemble de la surface au moyen des symétries par rapport aux plans du trièdre.
-
Cy-Dup-033 Reprenant la question des cyclides en 1864, Gaston Darboux introduit une classe remarquable de surfaces du quatrième degré, appelées depuis cyclides de Darboux, qui contient en particulier les cyclides de Dupin. Ces surfaces jouissent de la propriété de contenir six familles de cercles, et même dix si on compte les cercles imaginaires. Les cyclides de Dupin correspondent au cas où certaines familles coïncident pour n’en former plus que quatre.
Cette série de neuf modèles en bois dûs à Caron, représente différentes cyclides de Darboux. La partie en bois correspond au huitième de la surface située dans l’octant matérialisé par le trièdre sur lequel figure l’équation. On reconstitue l’ensemble de la surface au moyen des symétries par rapport aux plans du trièdre.
-
Cy-Dup-034 Reprenant la question des cyclides en 1864, Gaston Darboux introduit une classe remarquable de surfaces du quatrième degré, appelées depuis cyclides de Darboux, qui contient en particulier les cyclides de Dupin. Ces surfaces jouissent de la propriété de contenir six familles de cercles, et même dix si on compte les cercles imaginaires. Les cyclides de Dupin correspondent au cas où certaines familles coïncident pour n’en former plus que quatre.
Cette série de neuf modèles en bois dûs à Caron, représente différentes cyclides de Darboux. La partie en bois correspond au huitième de la surface située dans l’octant matérialisé par le trièdre sur lequel figure l’équation. On reconstitue l’ensemble de la surface au moyen des symétries par rapport aux plans du trièdre.
-
Cy-Dup-035 Reprenant la question des cyclides en 1864, Gaston Darboux introduit une classe remarquable de surfaces du quatrième degré, appelées depuis cyclides de Darboux, qui contient en particulier les cyclides de Dupin. Ces surfaces jouissent de la propriété de contenir six familles de cercles, et même dix si on compte les cercles imaginaires. Les cyclides de Dupin correspondent au cas où certaines familles coïncident pour n’en former plus que quatre.
Cette série de neuf modèles en bois dûs à Caron, représente différentes cyclides de Darboux. La partie en bois correspond au huitième de la surface située dans l’octant matérialisé par le trièdre sur lequel figure l’équation. On reconstitue l’ensemble de la surface au moyen des symétries par rapport aux plans du trièdre.
-
Cy-Dup-036 Reprenant la question des cyclides en 1864, Gaston Darboux introduit une classe remarquable de surfaces du quatrième degré, appelées depuis cyclides de Darboux, qui contient en particulier les cyclides de Dupin. Ces surfaces jouissent de la propriété de contenir six familles de cercles, et même dix si on compte les cercles imaginaires. Les cyclides de Dupin correspondent au cas où certaines familles coïncident pour n’en former plus que quatre.
Cette série de neuf modèles en bois dûs à Caron, représente différentes cyclides de Darboux. La partie en bois correspond au huitième de la surface située dans l’octant matérialisé par le trièdre sur lequel figure l’équation. On reconstitue l’ensemble de la surface au moyen des symétries par rapport aux plans du trièdre.
-
Cy-Dup-037 Reprenant la question des cyclides en 1864, Gaston Darboux introduit une classe remarquable de surfaces du quatrième degré, appelées depuis cyclides de Darboux, qui contient en particulier les cyclides de Dupin. Ces surfaces jouissent de la propriété de contenir six familles de cercles, et même dix si on compte les cercles imaginaires. Les cyclides de Dupin correspondent au cas où certaines familles coïncident pour n’en former plus que quatre.
Cette série de neuf modèles en bois dûs à Caron, représente différentes cyclides de Darboux. La partie en bois correspond au huitième de la surface située dans l’octant matérialisé par le trièdre sur lequel figure l’équation. On reconstitue l’ensemble de la surface au moyen des symétries par rapport aux plans du trièdre.
-
Cy-Dup-038 Reprenant la question des cyclides en 1864, Gaston Darboux introduit une classe remarquable de surfaces du quatrième degré, appelées depuis cyclides de Darboux, qui contient en particulier les cyclides de Dupin. Ces surfaces jouissent de la propriété de contenir six familles de cercles, et même dix si on compte les cercles imaginaires. Les cyclides de Dupin correspondent au cas où certaines familles coïncident pour n’en former plus que quatre.
Cette série de neuf modèles en bois dûs à Caron, représente différentes cyclides de Darboux. La partie en bois correspond au huitième de la surface située dans l’octant matérialisé par le trièdre sur lequel figure l’équation. On reconstitue l’ensemble de la surface au moyen des symétries par rapport aux plans du trièdre.
-
Cy-Tor-001 Pénétration bitangente de la sphère et du tore (arrachement suivant deux cercles).
Tore arraché et solide commun.
-
Cy-Tor-002 Pénétration bitangente de la sphère et du tore (arrachement suivant deux cercles).
Sphère arrachée.
-
Cy-Tor-003 Cyclide. Cercles de Villarceau.
-
Dactyle N°8189
-
E001 Levé de bâtiments.
Plan de la salle de travaux graphiques.
-
E002 Lavis.
Cylindres dépolis en projection verticale.
-
E003
-
E004
-
E005 Intersection de deux prismes. Solide commun.
-
E006 Intersection de deux cones.
-
E007 Intersection d'un cône et d'un cylindre ayant un plan tangent commun.
Spéciale B.
-
E008
-
E009 Spéciale B.
-
E010
-
E011
-
E012
-
E013 1e sciences.
-
E014 Deux cônes, plan tangent commun.
-
E015
-
E016 Perspective conique.
-
E017 Solide commun à deux prismes.
-
E018 Composition, pl. 6.
-
E019
-
E020 Cône de rév. et tore.
Composition.
Spé B.
-
E021 Intersection d'un hyperboloïde et d'un cône de révolution.
-
E022
-
E023 Composition.
-
E024
-
E025 Sphère et trièdre.
-
E026 Intersection d'une pyramide et d'une sphère.
-
E027
-
E028
-
E029 Math. Spéciales A.
-
E030 Cône et cylindre de révolution tangents en C, C'.
Sections par plan (LT,C,C').
-
E031
-
E032
-
E033